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ABSTRACT: Increasing the molar mass of the polymers in blends and in solutions tends to
decrease miscibility, but application of the lattice cluster theory for strongly interactiong
polymer systems to telechelic polymer solutions explains why this usual trend can be inverted,
a situation actually observed in some telechelic polymer solutions and blends.

Telechelic polymers are capable of supramolecular assembly
due to the presence of associative groups at the two chain

ends (called “stickers”). Technological applications of tele-
chelics range from compatibilizers or stabilizers in polymer
blends and nanocomposite materials1 to precursors of high
solids coatings2 and thermoplastic rubbers.3 The thermody-
namical description of this self-assembly process is nontrivial4,5

because of the interplay of the strong interactions between the
stickers and the van der Waals interactions between segments
of all species in the system. Additional complexity arises from
the chain connectivity introduced by the associative clusters as
well as from the internal chemical structure of individual
telechelic molecules. All these requisite ingredients for a
molecular based description of self-assembly are incorporated
into our recently developed lattice cluster theory (LCT).6,7

While prior theoretical studies8,9 of telechelics are mostly
devoted to binary blends of telechelic species, we focus on
investigating the phase behavior of telechelic chain solutions,
which may differ qualitatively from that for binary polymer
blends. The extended lattice model10 represents the telechelic
molecules (component 1) as (completely flexible) linear chains
(each composed of M united atom groups that extend over M
lattice sites), and the solvent molecules (component 2) are
depicted as species occupying single lattice sites, with no empty
sites allowed. The segments lying at the ends of individual
telechelic chains (the “stickers”) interact with the strong sticky
interaction energy ε s when a pair of stickers resides on nearest
neighbor lattice sites, while the remaining segments of both
components interact with each other through much weaker
nearest neighbor van der Waals energies {ε ij}. Each sticker is
permitted to participate in only one sticky bond, which implies
the formation of only linear self-assembled clusters (cyclic
structures are ignored). The van der Waals exchange energy ε is
defined as ε = 2ε 12 − ε 11 − ε 22 (with the subscripts ij labeling

the species) and provides a measure of the effective solute−
solvent interactions that govern the solution’s phase stability.
The Helmholtz free energy f (per lattice site) is the sum of

the free energy fo of the hypothetical reference system that is
devoid of sticky interactions, that is, a system composed of the
solvent and chain molecules whose segments interact only
through weak Waals forces, and the free energy contribution fs
that arises from strong sticky interactions,6,7

(1)

with fs given by

(2)

and

(3)

where x = 2/M, β = 1/(kBT) [with kB being Boltzmann’s
constant and T designating the absolute temperature], ϕ is the
volume fraction of telechelic polymers, ε s is the sticky
interaction energy (relative to the van der Waals energy ε 11),
z is the lattice coordination number (taken as z = 6 for a simple
cubic lattice), and Yi (i = 1−4) are corrections (to the mean-
field free energy fs

(mf)) stemming from short-range correlations
(involving a length scale of up to four consecutive bonds).7

The variable y in eqs 2 and 3 is defined as the ratio of the
number (H) of sticker−sticker “bonds” in the systems to the
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total number Nl of lattice sites.
7 This intrinsic quantity y in the

LCT is determined by the maximum term method, that is, by
applying the condition

(4)

which can be written in terms of molecular variables as,

(5)

Equation 5 must be solved numerically, yielding the density y*
that is substituted for y into eqs 2 and 3 to determine the free
energy. This minimization of the free energy with respect to y
leads to the expression,

(6)

Notice that y* depends on all molecular and thermodynamic
parameters characterizing the system, that is, on T, ϕ, M, ε, and
ε s.
The specific Helmholtz free energy fo = Fo/Nl for the

reference system (without sticky interactions) also emerges
from the lattice cluster theory10 as a polynomial in the volume
fraction ϕ,

(7)

The first two terms on the right-hand side of eq 7 represent the
leading combinatorial portion of fo, while the coefficients C (k)

(k = 0, 1, 2, ..., 6) are sums of athermal limit entropy, first order
energy, and second order energy contributions to the
noncombinatorial portion of free energy fo that describe non-
random mixing due to correlations over distances up to the
scale of four correlating bonds.10

Below, we demonstrate that the miscibility of telechelic chain
solutions can either decrease or increase with chain length M
depending on the strength of the sticky interactions. Generally,
phase separation in self-assembling systems is a complex
phenomenon due to the coupling between self-assembly
(governed by the sticky energy ε s) and phase separation,
which is driven by the effective van der Waals solute−solvent
interactions (namely, by a sufficiently large, positive exchange
energy ε).11,12 Because the telechelic solutions are assumed, for
simplicity, to be incompressible, the spinodal condition for
phase stability is the vanishing of the second derivative of the
free energy f with respect to the system’s composition ϕ

(8)

When the second derivative of the specific Helmholz free
energy f in eq 8 is evaluated from eq 6, the condition in eq 8
takes the form

(9)

where the density y* and the derivative

(10)

are determined from eq 5 and where the derivative ∂ 2(βfo)/∂ϕ
2

simply follows from eq 7.
Illustrative examples of the spinodal curves for solutions of

self-assembling telechelic solutions in Figures 1 and 2 refer to

systems with relatively weak and strong sticky energies ε s,
respectively. The spinodals in Figure 1 all correspond to the
same sticky energy ε s = −250 K and the same van der Waals
exchange energy ε = 100 K but to variable lengths M of
individual telechelic chains. The phase boundaries in Figure 1
conform to the well-known observation that an increase in
polymer mass inevitably diminishes the solution’s miscibity.
This rule of thumb is perfectly consistent with the prediction
of FH theory that increasing M causes a decrease of the
combinatorial entropy of the system, and thereby an increase
in the spinodal temperature Tsp(ϕ) and a decrease in
miscibility.

Figure 1. LCT spinodal curves for solutions of weakly interacting
linear telechelic chains in solutions with single-site solvent molecules.
The enegies ε s and ε and the length M of the telechelic chains are
indicated on the figure.

Figure 2. LCT spinodal curves for solutions of strongly interacting
linear telechelic chains in solutions with single-site solvent molecules.
The energies ε s and ε and the length M of the telechelic chains are
indicated on the figure.
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The familiar trend in Figure 1 might be anticipated to be
independent of the magnitude of the sticky energy ε s, but
Figure 2 demonstrates, on the contrary, that the system’s
miscibility improves as the chain length M increases when the
sticky energy |ε s| is large relative to the exchange energy ε (for
instance, ε s = −2500 K). Typical hydrogen-bonding energies
range from −5 to −155 kJ/mol,13 and ε s = −2500 K
corresponds to about −20 kJ/mol, which lies closer to the
lower than to the upper limit of this wide range.
The explanation of this unexpected behavior in Figure 2 is

provided by Figures 3 and 4, which present the combinatorial

entropy s (comb) = so
(comb) + ss

(comb) as a function of M for systems
with relatively weak and strong sticky interactions, respectively.
The quantity s (comb) is defined as the sum of the combinatorial
entropy ss

(comb) arising from the sticky interactions,

(11)

and the combinatorial entropy so
(comb) of the reference system

(with no sticky interactions)

(12)

where terms linear in ϕ are excluded because these terms do not
affect the system’s miscibility. Thus, we retain the portion of so

(comb)

that corresponds to the combinatorial entropy of mixing. While
both s (comb) and so

(comb) must be positive, ss
(comb) can be of either

sign due to the dependence of y* on the magnitude of ε s. When
the sticky interactions are weak, ss

(comb) is generally positive and
often much smaller than so

(comb) (see Figure 3). Correspondingly,
s (comb) either coincides with so

(comb) or exceeds it somewhat. The
trend of diminishing s (comb)(M) with increasing M is a universal
characteristic of weakly associating systems, regardless of their

composition and temperature. On the other hand, when the
sticky interactions are strong, the combinatorial entropy ss

(comb) is
always negative and not necessarily small (see Figure 4).
Consequently, the total combinatorial entropy s (comb) becomes
smaller than so

(comb) and begins growing slowly with M, except for
a very narrow range of very small M. This upturn in the
dependence of s (comb) on the chain length M is clearly responsible
for the enhancement of the solution miscibility (see Figure 2) as
M increases. The addition of the noncombinatorial entropy
s (ncomb) to s (comb) in Figure 4 ensures that the entropy of mixing
decreases with M over the whole range, which in turn explains
why the spinodal temperatures Tsp in Figure 2 for M = 10 exceed
those corresponding to M = 5.
The enhancement of the miscibility in Figure 2 occurs for

rather short chains (M ≤ 50), and a further increase in M does
not noticeably alter the phase boundaries. The saturation of the
system’s miscibility as M increases is by itself interesting and
supports the physical validity of the theory which correctly
predicts that the improvement in the miscibility of the solution
(driven by increasing the size of the solute) is not unbounded.
The miscibility must either saturate or begin diminishing when
M exceeds a critical value Mcr(ε s,ε). Our calculations indicate
the occurrence of the former trend. Evidently, Mcr is a function
the sticky energy ε s and grows with |ε s|. For instance, when
ε s = −3000 K (and ε = 100 K), Mcr ≈ 80.
In summary, we demonstrate that unusual variations in the

miscibility of self-assembling telechelic polymer solutions with
the molar mass of the polymer can be explained within the
framework of a statistical thermodynamic theory that
incorporates a description of the molecular details of the
system. These trends are expected to have implications for
many applications of telechelics, and, in fact, the trends have
been observed for some telechelic polymer systems. For instance,
experiments for aqueous solutions of poly(N-isopropylacryla-
mides)14 and poly(ethylene oxides),15 as well as for poly-
(ethylene glycol)/poly(propylene glycol) blends16 provide
evidence indicating that miscibility can increase with polymer
molar mass within certain ranges of M. The former systems are
lower critical solution temperature (LCST) mixtures, while the
latter ones are upper critical solution temperature (UCST)
binary polymer blends.
Our current theory of telechelic chain solutions has been

derived only for (incompressible) telechelic solutions that
phase separate upon cooling but can be extended to LCST
systems as well as to compressible systems more generally.10,17

The restriction emerges from the present modeling of the
telechelic chains as linear polymer chains and the solvent
molecules as occupying single lattice sites. Consequently, the
positive “entropic” component of the Flory−Huggins inter-
action parameter χ is too small to compete effectively with a
(negative) exchange energy ε to produce a LCST phase
diagram,18 a mechanism for LCST phase behavior that emerges
naturally from the LCT (even for incompressible mixtures) and
that has been confirmed by a large body of experimental
data.17,18 The treatment of LCST systems requires the
additional nontrivial extension of the LCT for models in
which solvent molecules have internal molecular structure, that
is, cover several lattice sites, and the telechelic self-assembling
species contain tri- or tetra-functional groups. Similar
modifications of the LCT are also necessary to describe blends
of two telechelic polymers with differing internal monomer
structures. Nonetheless, our calculations clearly demonstrate
that the miscibility trends in associating polymer systems can

Figure 3. LCT combinatorial entropy s (comb) for solutions of weakly
interacting linear telechelic chains in solutions with single-site solvent
molecules as a function of the length M of an individual telechelic
chain. Solid and dashed lines illustrate, respectively, the portions
ss
(comb) and so

(comb) of s (comb) that are defined in the text.

Figure 4. Same as Figure 3, but for solutions of strongly interacting
linear telechelic chains.
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depart considerably from those for non-associating polymer
mixtures.
Our results suggest that the LCT is also well suited for

investigating complex phase behaviors of binary mixtures of two
telechelics. For instance, recent theoretical studies9 of binary
telechelic blends reveal the existence of a very rich array of
miscibility patterns for these systems. However, the use of a few
adjustable parameters in the merger9 of the Coleman-Painter
association model19 and classic Flory−Huggins theory
precludes obtaining a molecular interpretation of the miscibility
trends and identifying the molecular factors governing the
phase behavior of these systems. The application of the self-
consistent field theory framework to telechelic polymer blends
seems promising8 but at the expense of heavy numerical effort.
None of these issues hampers the LCT.
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